Back to Use Cases
LLM Agent Memory: Persistent Context for AI Agents
AI/ML
Agent Operations
AI agents powered by LLMs face significant memory limitations:
The Problem
AI agents powered by LLMs face significant memory limitations:
- No persistent memory across sessions
- Context window limitations
- Inefficient memory retrieval
- Poor memory prioritization
- Lack of memory explanation
- Memory hallucinations
This results in agents that forget important context, repeat questions, and provide inconsistent responses.
How AttentionDB Solves It
AttentionDB provides a sophisticated memory management system for LLM agents:
1. Persistent Memory Architecture
-
Session Memory
- Per-conversation context
- Short-term memory buffer
- Active goals and tasks
-
Long-term Memory
- Cross-session knowledge
- User preferences
- Historical interactions
-
Shared Memory
- Common knowledge base
- Learned patterns
- Best practices
2. Intelligent Memory Management
AttentionDB uses multiple attention types to manage agent memory:
-
recency
: Weight: 0.8- Recent interactions
- Active context windows
- Current conversation flow
-
relevance
: Weight: 0.7- Topic similarity
- Task alignment
- User intent match
-
importance
: Weight: 0.6- Critical decisions
- User preferences
- Error corrections
3. Memory Operations
// Initialize agent memory
const agentMemory = await attentionDB.createAgentMemory({
agentId: "agent_123",
attention: {
recency: 0.8,
relevance: 0.7,
importance: 0.6
}
});
// Store memory
await agentMemory.store({
type: "interaction",
content: "User prefers dark mode",
metadata: {
confidence: 0.9,
source: "explicit_statement"
}
});
// Retrieve relevant context
const context = await agentMemory.recall({
query: "user interface preferences",
limit: 5
});
// Explain memory selection
const explanation = await agentMemory.explain({
memoryId: "mem_456",
format: "natural_language"
});
4. Key Features
Memory Injection
- Dynamic context window management
- Automatic memory prioritization
- Relevance-based filtering
Memory Persistence
- Cross-session state management
- Durable storage backend
- Backup and recovery
Memory Explanation
- Transparent decision trails
- Memory source attribution
- Confidence scoring
Memory Optimization
- Automatic summarization
- Redundancy elimination
- Memory compression
Real World Impact
Case Study: Customer Service AI
A major tech company implemented AttentionDB in their AI support agents:
- Before: 40% context retention across sessions
- After: 95% context retention, 70% more efficient
- ROI: Reduced token usage by 50%
Success Metrics
- 95% context retention rate
- 70% reduction in repeated questions
- 50% lower token consumption
- 85% user satisfaction increase
Getting Started
# Install AttentionDB Agent Memory
npm install @attanix/agent-memory
# Initialize agent memory system
npx attanix init-agent --model=gpt-4
# Start memory tracking
npx attanix track-agent
Integration Example
import { AttentionDB } from '@attanix/agent-memory';
import { OpenAI } from 'openai';
// Initialize AttentionDB
const attentionDB = new AttentionDB({
model: 'gpt-4',
attention: {
recency: 0.8,
relevance: 0.7,
importance: 0.6
}
});
// Create agent with memory
const agent = await attentionDB.createAgent({
name: 'support_agent',
basePrompt: 'You are a helpful support agent...',
memory: {
sessionTTL: '24h',
maxMemories: 1000
}
});
// Handle conversation with memory
agent.on('message', async (msg) => {
// Recall relevant memories
const context = await agent.recall({
query: msg.content,
limit: 5
});
// Generate response with context
const response = await agent.respond(msg, context);
// Store new memory
await agent.remember({
type: 'interaction',
content: {
user: msg.content,
agent: response
}
});
});
Best Practices
- Configure memory TTL based on use case
- Implement regular memory consolidation
- Monitor memory usage and performance
- Use explanation API for transparency