Back to Use Cases

LLM Agent Memory: Persistent Context for AI Agents

AI/ML
Agent Operations

AI agents powered by LLMs face significant memory limitations:

The Problem

AI agents powered by LLMs face significant memory limitations:

  • No persistent memory across sessions
  • Context window limitations
  • Inefficient memory retrieval
  • Poor memory prioritization
  • Lack of memory explanation
  • Memory hallucinations

This results in agents that forget important context, repeat questions, and provide inconsistent responses.

How AttentionDB Solves It

AttentionDB provides a sophisticated memory management system for LLM agents:

1. Persistent Memory Architecture

  • Session Memory

    • Per-conversation context
    • Short-term memory buffer
    • Active goals and tasks
  • Long-term Memory

    • Cross-session knowledge
    • User preferences
    • Historical interactions
  • Shared Memory

    • Common knowledge base
    • Learned patterns
    • Best practices

2. Intelligent Memory Management

AttentionDB uses multiple attention types to manage agent memory:

  • recency: Weight: 0.8

    • Recent interactions
    • Active context windows
    • Current conversation flow
  • relevance: Weight: 0.7

    • Topic similarity
    • Task alignment
    • User intent match
  • importance: Weight: 0.6

    • Critical decisions
    • User preferences
    • Error corrections

3. Memory Operations

// Initialize agent memory
const agentMemory = await attentionDB.createAgentMemory({
  agentId: "agent_123",
  attention: {
    recency: 0.8,
    relevance: 0.7,
    importance: 0.6
  }
});

// Store memory
await agentMemory.store({
  type: "interaction",
  content: "User prefers dark mode",
  metadata: {
    confidence: 0.9,
    source: "explicit_statement"
  }
});

// Retrieve relevant context
const context = await agentMemory.recall({
  query: "user interface preferences",
  limit: 5
});

// Explain memory selection
const explanation = await agentMemory.explain({
  memoryId: "mem_456",
  format: "natural_language"
});

4. Key Features

Memory Injection

  • Dynamic context window management
  • Automatic memory prioritization
  • Relevance-based filtering

Memory Persistence

  • Cross-session state management
  • Durable storage backend
  • Backup and recovery

Memory Explanation

  • Transparent decision trails
  • Memory source attribution
  • Confidence scoring

Memory Optimization

  • Automatic summarization
  • Redundancy elimination
  • Memory compression

Real World Impact

Case Study: Customer Service AI

A major tech company implemented AttentionDB in their AI support agents:

  • Before: 40% context retention across sessions
  • After: 95% context retention, 70% more efficient
  • ROI: Reduced token usage by 50%

Success Metrics

  • 95% context retention rate
  • 70% reduction in repeated questions
  • 50% lower token consumption
  • 85% user satisfaction increase

Getting Started

# Install AttentionDB Agent Memory
npm install @attanix/agent-memory

# Initialize agent memory system
npx attanix init-agent --model=gpt-4

# Start memory tracking
npx attanix track-agent

Integration Example

import { AttentionDB } from '@attanix/agent-memory';
import { OpenAI } from 'openai';

// Initialize AttentionDB
const attentionDB = new AttentionDB({
  model: 'gpt-4',
  attention: {
    recency: 0.8,
    relevance: 0.7,
    importance: 0.6
  }
});

// Create agent with memory
const agent = await attentionDB.createAgent({
  name: 'support_agent',
  basePrompt: 'You are a helpful support agent...',
  memory: {
    sessionTTL: '24h',
    maxMemories: 1000
  }
});

// Handle conversation with memory
agent.on('message', async (msg) => {
  // Recall relevant memories
  const context = await agent.recall({
    query: msg.content,
    limit: 5
  });
  
  // Generate response with context
  const response = await agent.respond(msg, context);
  
  // Store new memory
  await agent.remember({
    type: 'interaction',
    content: {
      user: msg.content,
      agent: response
    }
  });
});

Best Practices

  1. Configure memory TTL based on use case
  2. Implement regular memory consolidation
  3. Monitor memory usage and performance
  4. Use explanation API for transparency

Learn More

Integrations

OpenAI
Anthropic
LangChain
LlamaIndex