April 6, 2024·10 min read
Attanix + Qdrant + OpenAI = 🔥: A Full RAG Stack in 20 Minutes
RAGOpenAIQdrantTutorial
Building a robust RAG system requires careful integration of multiple components. This guide shows how to combine Attanix's memory capabilities with Qdrant's efficient vector search and OpenAI's powerful generation to create a production-ready RAG stack in minutes.
Why This Stack?
Each component brings unique strengths:
- Attanix: Sophisticated memory and context management
- Qdrant: Fast and scalable vector similarity search
- OpenAI: State-of-the-art text generation
- Together: A complete, production-ready RAG solution
Quick Start Implementation
Here's how to set up the full stack:
from attanix import MemorySystem
from qdrant_client import QdrantClient
from openai import OpenAI
from attanix.rag import RAGSystem
# Initialize components
memory = MemorySystem()
qdrant = QdrantClient("localhost", port=6333)
openai_client = OpenAI(api_key="your-api-key")
# Create RAG system
rag = RAGSystem(
memory_system=memory,
vector_store=qdrant,
llm=openai_client
)
# Use the system
response = await rag.query(
"What are the best practices for RAG systems?",
context={
"domain": "AI",
"recency": "last 6 months"
}
)
Core Components Integration
- Document Processing Pipeline
async def process_documents(documents):
# Split documents
chunks = await rag.split_documents(documents)
# Generate embeddings
embeddings = await rag.generate_embeddings(chunks)
# Store in Qdrant
await rag.vector_store.upsert(
points=[
{
"id": chunk.id,
"vector": embedding,
"payload": {
"text": chunk.text,
"metadata": chunk.metadata
}
}
for chunk, embedding in zip(chunks, embeddings)
]
)
# Store in Attanix
await rag.memory_system.store(
content=chunks,
context={
"source": "document_processing",
"timestamp": datetime.now()
}
)
- Query Processing
async def process_query(query, context=None):
# Generate query embedding
query_embedding = await rag.generate_embeddings([query])[0]
# Search in Qdrant
vector_results = await rag.vector_store.search(
query_vector=query_embedding,
limit=5
)
# Get context from Attanix
memory_context = await rag.memory_system.retrieve(
query=query,
filters=context
)
# Combine results
combined_context = await rag.combine_contexts(
vector_results=vector_results,
memory_context=memory_context
)
# Generate response
response = await rag.generate_response(
query=query,
context=combined_context
)
return response
- Memory Integration
async def update_memory(query, response, context):
# Store interaction
await rag.memory_system.store(
content={
"query": query,
"response": response,
"context": context
},
metadata={
"type": "interaction",
"timestamp": datetime.now()
}
)
# Update salience scores
await rag.memory_system.update_salience(
content_ids=[result.id for result in context["vector_results"]],
interaction_type="query_response"
)
Advanced Features
- Hybrid Search
async def hybrid_search(query):
# Vector search
vector_results = await rag.vector_store.search(
query_vector=await rag.generate_embeddings([query])[0],
limit=3
)
# Keyword search
keyword_results = await rag.memory_system.keyword_search(
query=query,
limit=3
)
# Combine results
return await rag.rank_results(
vector_results=vector_results,
keyword_results=keyword_results,
weights=[0.6, 0.4]
)
- Contextual Reranking
async def rerank_results(results, query, context):
# Get memory context
memory_context = await rag.memory_system.retrieve(
query=query,
filters=context
)
# Rerank based on memory
return await rag.rerank(
results=results,
context=memory_context,
scoring_function="relevance_with_memory"
)
- Feedback Loop
async def process_feedback(query, response, feedback):
# Update memory based on feedback
await rag.memory_system.store(
content={
"query": query,
"response": response,
"feedback": feedback
},
context={
"type": "feedback",
"timestamp": datetime.now()
}
)
# Adjust salience scores
await rag.memory_system.adjust_salience(
content_ids=[result.id for result in response["context"]],
feedback_score=feedback["score"]
)
Best Practices
-
System Configuration
- Optimize chunk sizes
- Set appropriate limits
- Configure caching
- Monitor performance
-
Memory Management
- Implement cleanup routines
- Set retention policies
- Monitor memory usage
- Optimize storage
-
Performance Optimization
- Use batch processing
- Implement caching
- Optimize queries
- Monitor latency
Real-World Examples
Here are some production use cases:
- Knowledge Bases: Enterprise documentation
- Customer Support: Automated assistance
- Research Tools: Academic literature
- Content Creation: Writing assistance
Next Steps
Ready to build your RAG stack? Check out our documentation or try our quickstart guide.

Author Name
Brief author bio or description