Back to Blog
April 10, 2024·8 min read

We Don't Do Vector Dumps: The Attanix Philosophy

PhilosophyMemoryAITechnology

At Attanix, we believe that effective AI memory requires more than just storing vectors. This article explores our philosophy of structured, salient memory systems and why this approach is crucial for building truly intelligent AI.

Our Core Principles

1. Structured Memory

# Example of structured memory organization
memory_structure = {
    "hierarchy": {
        "concepts": {
            "parent": "AI Memory",
            "children": ["types", "mechanisms", "applications"]
        },
        "relationships": {
            "types": ["short_term", "long_term"],
            "mechanisms": ["storage", "retrieval"],
            "applications": ["learning", "reasoning"]
        }
    },
    "context": {
        "temporal": ["past", "present", "future"],
        "spatial": ["local", "global"],
        "conceptual": ["abstract", "concrete"]
    }
}

2. Salience-Based Retrieval

# Salience scoring example
async def score_salience(content, context):
    return {
        "relevance": calculate_relevance(content, context),
        "importance": assess_importance(content),
        "recency": evaluate_recency(content),
        "usage": track_usage_patterns(content)
    }

# Memory retrieval with salience
async def retrieve_memory(query, context):
    memories = await memory_system.search(query)
    scored = await score_salience(memories, context)
    return rank_by_salience(scored)

3. Dynamic Adaptation

# Dynamic adaptation example
async def adapt_memory(content, feedback):
    # Update importance based on usage
    await update_importance(content, feedback)
    
    # Adjust relationships based on patterns
    await adjust_relationships(content)
    
    # Optimize storage based on access patterns
    await optimize_storage(content)

Why We're Different

1. Beyond Vector Storage

# Traditional vector storage
vector_store = {
    "embeddings": [...],
    "metadata": {...},
    "index": {...}
}

# Attanix's structured approach
attanix_memory = {
    "structure": {
        "hierarchy": {...},
        "relationships": {...},
        "context": {...}
    },
    "salience": {
        "scores": {...},
        "patterns": {...},
        "adaptation": {...}
    },
    "dynamics": {
        "learning": {...},
        "optimization": {...},
        "healing": {...}
    }
}

2. Contextual Understanding

# Context preservation example
async def preserve_context(content):
    # Store with rich context
    await memory.store(
        content=content,
        context={
            "source": "reliable_source",
            "timestamp": datetime.now(),
            "importance": 0.8,
            "relationships": await find_relationships(content)
        }
    )
    
    # Update salience
    await update_salience(content)
    
    # Maintain structure
    await maintain_structure(content)

3. Intelligent Retrieval

# Intelligent retrieval example
async def retrieve_intelligently(query, context):
    # Get relevant memories
    memories = await memory.search(query)
    
    # Score by salience
    scored = await score_salience(memories, context)
    
    # Filter by relevance
    relevant = await filter_relevant(scored, context)
    
    # Rank by importance
    ranked = await rank_by_importance(relevant)
    
    return ranked

Implementation Philosophy

1. Memory Management

# Memory management example
class MemoryManager:
    async def store(self, content, context):
        # Structure content
        structured = await self.structure_content(content)
        
        # Preserve context
        await self.preserve_context(structured, context)
        
        # Update salience
        await self.update_salience(structured)
    
    async def retrieve(self, query, context):
        # Search intelligently
        results = await self.search_intelligently(query, context)
        
        # Score by salience
        scored = await self.score_salience(results, context)
        
        # Return ranked results
        return await self.rank_results(scored)

2. System Architecture

# System architecture example
class AttanixSystem:
    def __init__(self):
        self.memory = MemorySystem()
        self.salience = SalienceEngine()
        self.adaptation = AdaptationEngine()
    
    async def process(self, content):
        # Structure memory
        structured = await self.memory.structure(content)
        
        # Score salience
        scored = await self.salience.score(structured)
        
        # Adapt system
        await self.adaptation.adapt(scored)

3. Quality Assurance

# Quality assurance example
class QualityManager:
    async def verify_memory(self, content):
        # Check structure
        structure_ok = await self.verify_structure(content)
        
        # Check salience
        salience_ok = await self.verify_salience(content)
        
        # Check adaptation
        adaptation_ok = await self.verify_adaptation(content)
        
        return all([structure_ok, salience_ok, adaptation_ok])

Real-World Applications

1. Knowledge Management

# Knowledge management example
class KnowledgeManager:
    async def store_knowledge(self, content):
        # Structure knowledge
        structured = await self.structure_knowledge(content)
        
        # Preserve context
        await self.preserve_context(structured)
        
        # Update salience
        await self.update_salience(structured)

2. Learning Systems

# Learning system example
class LearningSystem:
    async def learn(self, experience):
        # Structure experience
        structured = await self.structure_experience(experience)
        
        # Update knowledge
        await self.update_knowledge(structured)
        
        # Adapt system
        await self.adapt_system(structured)

3. Decision Support

# Decision support example
class DecisionSupport:
    async def support_decision(self, context):
        # Retrieve relevant knowledge
        knowledge = await self.retrieve_relevant(context)
        
        # Score by salience
        scored = await self.score_salience(knowledge)
        
        # Generate recommendations
        return await self.generate_recommendations(scored)

Next Steps

Interested in our philosophy? Check out our documentation or join our community.

Author

Author Name

Brief author bio or description