April 5, 2024·8 min read
Using Attanix with LangChain: Real Agent Memory in Minutes
LangChainIntegrationAgentsTutorial
LangChain has revolutionized how we build AI applications, but one area where it often falls short is in persistent memory. This tutorial shows how to integrate Attanix with LangChain to create agents that maintain rich, contextual memory across conversations and tasks.
Why Attanix + LangChain?
The combination of LangChain's powerful agent framework and Attanix's sophisticated memory system provides several key benefits:
- Persistent Context: Maintain conversation history and context across sessions
- Structured Memory: Store and retrieve information with rich metadata
- Dynamic Learning: Adapt to user preferences and patterns over time
- Scalable Storage: Handle growing conversation histories efficiently
Quick Start Integration
Here's how to get started with Attanix and LangChain:
from langchain.agents import AgentExecutor
from langchain.chat_models import ChatOpenAI
from attanix import MemorySystem
from attanix.langchain import AttanixMemory
# Initialize Attanix memory
memory = MemorySystem()
attanix_memory = AttanixMemory(memory_system=memory)
# Create a LangChain agent with Attanix memory
agent = AgentExecutor.from_agent_and_tools(
agent=ChatOpenAI(temperature=0),
tools=[...], # Your tools here
memory=attanix_memory,
verbose=True
)
# Use the agent with persistent memory
response = agent.run("What was our last conversation about?")
Memory Integration Patterns
- Conversation History
# Store conversation context
async def store_conversation(agent, message, response):
await attanix_memory.store(
content={
"message": message,
"response": response,
"timestamp": datetime.now()
},
context={
"conversation_id": agent.conversation_id,
"user_id": agent.user_id
}
)
- Tool Usage Memory
# Remember tool usage patterns
async def remember_tool_usage(agent, tool_name, result):
await attanix_memory.store(
content={
"tool": tool_name,
"result": result,
"success": result["success"]
},
context={
"task": agent.current_task,
"user_preferences": agent.user_preferences
}
)
- Context Preservation
# Maintain context across sessions
async def load_context(agent, conversation_id):
context = await attanix_memory.retrieve(
query="conversation context",
filters={
"conversation_id": conversation_id
}
)
agent.context = context
Advanced Integration Features
- Custom Memory Classes
class CustomAttanixMemory(AttanixMemory):
async def store(self, content, context):
# Add custom preprocessing
processed = await self.preprocess(content)
await super().store(processed, context)
async def retrieve(self, query, filters):
# Add custom retrieval logic
results = await super().retrieve(query, filters)
return await self.postprocess(results)
- Memory Chains
# Chain multiple memory operations
async def process_conversation(agent, message):
# Store current message
await attanix_memory.store(message)
# Retrieve relevant context
context = await attanix_memory.retrieve(
query="relevant context",
filters={"user_id": agent.user_id}
)
# Update agent state
agent.update_context(context)
- Memory Optimization
# Optimize memory usage
async def optimize_memory(agent):
# Clean up old memories
await attanix_memory.cleanup(
filters={
"timestamp": {"$lt": datetime.now() - timedelta(days=30)}
}
)
# Compress frequent patterns
await attanix_memory.compress_patterns()
Best Practices
-
Memory Management
- Set appropriate retention periods
- Implement memory cleanup routines
- Monitor memory usage
-
Context Handling
- Maintain conversation boundaries
- Preserve important context
- Clean up irrelevant information
-
Performance Optimization
- Batch memory operations
- Cache frequently accessed data
- Optimize retrieval patterns
Real-World Examples
Here are some practical applications of Attanix + LangChain:
- Customer Support Agents: Maintain context across multiple conversations
- Research Assistants: Remember and connect related information
- Personal Assistants: Learn from user preferences and patterns
Next Steps
Ready to enhance your LangChain agents with powerful memory? Check out our documentation or try our LangChain integration guide.

Author Name
Brief author bio or description